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The performance, accuracy, and observability of a model-free angle of attack and angle of sideslip estimator are

presented. The estimator does not require an aircraft dynamic model; rather, it only relies on measurements from a

GPSreceiver, an inertialmeasurement unit, and apitot tube.The estimator is an inertial navigation system (INS)/GPS

extended Kalman filter augmented with the states to account for wind and an additional measurement from a pitot

tube. It is shown that the estimator is conditionally observable. Conditions (maneuvers) that enhance its observability

are identified. A bound on the angle of attack and angle of sideslip estimate uncertainties is derived. The effect of INS/

GPS, horizontal and vertical wind uncertainty on the accuracy of angle of attack and angle of sideslip estimate is

assessed. Simulation and flight-test results of the method are presented. The results show that the 1 − σ bound on a

small, slow-flying unmanned aerial vehicle for angle of attack and sideslip angle estimates are about 5 and 3 deg,

respectively.

Nomenclature

Aαβ = flow angle sensitivity matrix
ax, ay, az = accelerometer components

bax, bay, baz = gyro biases

bgx, bgy, bgz = accelerometer biases

Cn
b = direction cosine matrix from body frame to

north–east–down frame
Gd = discrete observability gramian
H = linearized Jacobian measurement matrix
O = observability matrix
P = state error covariance matrix
PN , PE, PD = components of north–east–down position, m
Pαβ = flow angle error covariance matrix

R = measurement noise matrix
u, v, w = components of airspeed velocity in the body

frame, m∕s
ug, vg, wg = components of airspeed velocity in the north–

east–down frame, m∕s
Va = airspeed magnitude, m∕s
Va = airspeed vector
VN , VE, VD = components of inertial velocity, m∕s
WN ,WE,WD = components of wind velocity, m∕s
w = process noise vector
x = state vector
y = measurement vector
α, β = angle of attack and angle of sideslip
η = measurement noise vector
κ = condition number
σ�⋅� = standard deviation
τ�⋅� = correlation time constant (a first-order Gauss–

Markov process)
Φ = state-transition matrix
ϕ, θ, ψ = roll, pitch, and yaw angles

Subscripts

ad = accelerometer dynamic (time-varying) output
error

aw = accelerometer white (uncorrelated) output
error

gd = gyro dynamic (time-varying) output error
gw = gyro white (uncorrelated) output error
m = measured quantity

Superscripts

b = quantity in the body frame
L = lower bound
n = quantity in the north–east–down frame
U = upper bound

I. Introduction

A N AIRCRAFT’S performance and safety in flight depend, in
part, on the magnitude of airspeed Va and the orientation of the

aircraft, as quantified by angle of attack α and angle of sideslip β.
Accurate estimates of these parameters are essential for the efficient
and safe operation of aircraft. Traditionally, Va, α, and β are directly
measured by sensors, but there is new interest inmethods for indirectly
estimating them. For example, because many small unmanned aerial
vehicle (UAV) systems cannot accommodate sensors that directly
measure these quantities due to size, weight, and power constraints
(e.g., wind vanes), nontraditional approaches collectively known as
synthetic air data systems are being considered [1]. Synthetic air data
systems (SADS), in short, are algorithms for generating estimates of
the air data tripletsVa, α, and β indirectly without using the traditional
air data sensors such as pitot tubes and vanes. The current state-of-the-
art synthetic air data systems use a high-fidelity vehicle dynamics
model fused with inertial measurement unit (IMU) and GPS measure-
ments to estimate Va, α, and β [1–6]. However, a high-fidelity aircraft
model is difficult to obtain, and the parameters of the aircraftmodel can
change over time due to wear and tear of the airframe and propulsion
system [1]. This makes model-free synthetic air data estimation
methods an attractive alternative [7]. A model-free system would be
particularly useful for system identification of small UAVs. In these
applications, the aircraft dynamic model is the unknown that needs to
be determined, and algorithms for doing this can greatly benefit from
the availability of α and β estimates [8]. Another potential application
for model-free approaches is fault detection and isolation of traditional
air data system malfunctions [9–12].
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A. Prior Work

Some of the earlier SADS literature relevant to the work here is
from the late 1980s. In these works, the idea to use non-air-data
sensors such as IMU andGPS fusedwith vehicle dynamicsmodels to
estimate the air data triplet Va, α, and β (either separately or
combined) is explained. Most of the earlier work used vehicle
dynamics models to estimate air data in both aircraft and spacecraft
applications. We refer to this approach as the aerodynamic model-
based SADS [1,2,6,13–22]. The aerodynamic model-based SADS
are difficult to implement, however, because it is challenging to
obtain accurate vehicle dynamics models possessing the fidelity
needed to yield the required accuracy in α, β, and Va estimates. To
address this issue, model-free SADS have been proposed [4,5,7,23].
There are a couple of key challenges in the model-free SADS
framework. First, an accurate three-dimensional (3-D) wind vector
estimate is needed for the model-free SADS. In most of the previous
work, either wind modeling was not considered [23], or the wind
modeling is two-dimensional (horizontal wind only) [24]. Further-
more, most of thewind estimators require an aircraft dynamicsmodel
[25,26]. Another challenge that has not been addressed adequately in
the literature is the observability issue. Showing under what condi-
tions the estimator is observable has not been studied extensively. In
the Kalman filtering setting, observability analysis is often used as a
binary test to show whether a system is observable or not [27–30].
However, in the SADS problem, this is not sufficient because the fact
that a system is observable does not guarantee that the state estimates
will be accurate. This is the problem of quantifying observability, and
there has been some recent work in this area [31–34]. Most of the
work, however, analyzes observability as a function of the vehicle
trajectory ex post facto instead of giving guidance as to what flight
maneuver sequences to execute to enhance observability.

B. Contribution

There are two objectives of this paper. First, building on work first
reported in [7], wewill show that it is possible to design a model-free
SADS estimator that can generate sufficiently accurate estimates of
α, β, and 3-Dwind vector without using an aerodynamicmodel of the
aircraft. Second, wewill present a covariance analysis that quantifies
the accuracy of the model-free estimator as a function of inputs (e.g.,
sensor noise, vehicle maneuvers, etc.). To address the first objective,
we show that themodel-free SADS estimator is conditionally observ-
able under the slow-varying wind assumption. A linear time-varying
(LTV) observability analysis is also constructed to examine the flight
maneuver sequence that yields a high degree of observability. The
findings of this observability analysis are validated using simulation
and experimental flight-test data. Related to the second objective, the
covariance bounds for α and β are derived using the general law of
propagation variances [35]. Monte Carlo analysis is performed on
several parameters, including IMU and GPS sensor errors, to show
how various error sources affect the accuracy of α and β.

C. Paper Organization

The remainder of this paper is organized as follows. Section II
presents a brief description of the model-free SADS estimator

developed in this paper. Sections III and IV present the observability
analysis for the estimator. Section V presents simulation results
assessing the estimator’s performance, and Sec. VI addresses the
limitations on the model-free estimator. In Sec. VII, the estimator is
validated using flight-test data from a small UAV.

II. Estimator Description

In this section, a brief overview of the time update and measure-
ment models for the model-free air data estimator is provided. The
estimator is an extension of the 15-state, loosely coupled inertial
navigation system (INS)/GPS extended Kalman filter (EKF) [36],
which blends information from an IMU and GPS receiver. The INS/
GPS filter’s state vector is augmented by three additional states
representing the components of the wind velocity vector. Therefore,
the SADS filter state vector δx ∈ R18×1 is given by

δx � � δpn δvn δε δba δbg δWn �T (1)

where δpn� � δPN δPE δPD �T and δvn � � δVN δVE δVD �T
are the position and velocity error vectors resolved in the north–east–
down (NED) frame. The vector δε � � δεN δεE δεD �T represents
the attitude errors, which are defined to be the small rotations between
the actual NED frame and the estimated NED frame. The vectors
δba � � δbax δbay δbaz �T and δbg � � δbgx δbgy δbgz �T are
accelerometer and rate gyro triad output errors (bias). Finally, δWn �
� δWN δWE δWD �T is the error in the wind speed vector resolved
about the NED frame.
The estimates of α and β are calculated using the following:

α � tan−1
�
u

v

�
; β � sin−1

�
v�����������������������������

u2 � v2 � w2
p

�
(2)

where

� u v w �T � Cb
n�vn −Wn� (3)

and Cb
n � �Cn

b�T . The measurement vector y ∈ R7×1 consists of GPS
position and velocity estimates alongwith the scalar airspeedVa; it is
given by

y � �pn vn Va �T (4)

where Va is the true airspeed estimate determined using the pressure
measurements from a pitot tube. Figure 1 shows the overall filter
architecture. The time and covariance update equations for this filter
are, for the most part, identical to those of the filter described in [36].
What is new is the dynamic model for the augmented states (wind)
and the measurement model. Similar to the modeling of the accelero-
meter and gyroscope biases in the filter, the dynamics of the wind is
modeled as a first-order Gauss–Markov model, motivated by [37].
The details of the Gauss–Markovmodel for thewind and sensors can
be found in [37,38], respectively.
The linearized measurement error model used by the EKF is

δyi � yi − ŷi ≈Hiδxi � ηi. Note that Va � kvn −Wnk2 � ηVa
,

IMU

Specific Force 
(Acceleration)

Rotation Rate
(Gyro)

GPS

Pitot-tube

RF Front End

EKF Angle of Attack ( )
Sideslip ( )

, 
computation

, 

, 

Model-free SADS

Fig. 1 Model-free SADS filter architecture.
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and ŷi is the predicted measurement. The measurement Jacobian
Hi ∈ R7×18 is given by the following:

Hi �

2
664
I3 03 03×9 03

03 I3 03×9 03

01 Hvn 01×9 HWn

3
775 (5)

where Hvn can be calculated as

Hvn �
1

Va

�VN −WN VE −WE VD −WD � (6)

and HWn � −Hvn . The measurement noise η is modeled as a zero
mean, white Gaussian sequencewith a diagonal covarianceR. That is,

R � diag�� σ2PN
σ2PE

σ2PD
σ2VN

σ2VE
σ2VD

σ2Va
�� (7)

The estimates and covariances of α and β are computed at each time
step as illustrated by the α, β computation block in Fig. 1. Note that α
and β are not part of the EKF state vector. Rather, they are functions of
the EKF state vector, as given in Eqs. (2) and (3). Their covariance
matrixPαβ is computed using the general law of propagationvariances
[35] as follows:

Pαβ � AαβPA
T
αβ (8)

where P ∈ R18×18 is the covariance matrix of the EKF, and Aαβ ∈
R2×18 is the flow angle sensitivity matrix given by

Aαβ �

2
6664

∂α
∂PN

∂α
∂PE

∂α
∂PD

∂α
∂VN

∂α
∂VE

∂α
∂VD

∂α
∂ϕ

∂α
∂θ

∂α
∂ψ

∂α
∂bax

∂α
∂bay

∂α
∂baz

∂α
∂bgx

∂α
∂bgy

∂α
∂bgz

∂α
∂WN

∂α
∂WE

∂α
∂WD

∂β
∂PN

∂β
∂PE

∂β
∂PD

∂β
∂VN

∂β
∂VE

∂β
∂VD

∂β
∂ϕ

∂β
∂θ

∂β
∂ψ

∂β
∂bax

∂β
∂bay

∂β
∂baz

∂β
∂bgx

∂β
∂bgy

∂β
∂bgz

∂β
∂WN

∂β
∂WE

∂β
∂WD

3
7775 (9)

The partial derivativeswith respect to the positionpn, accelerometer
ba, and gyro bg biases are zero (see the Appendix). Therefore, the
covariance ofα andβ dependson the covarianceof the inertial velocity,
attitude, and 3-D wind estimates. The matrix Aαβ will be used in
Sec. VI for error analysis.

III. Observability Analysis

In [7], it was shown that the SADS estimator is conditionally
observable. For completeness, wewill briefly discuss the results of the
observability analysis from [7] because its results are a prerequisite for
understanding the observability enhancement results discussed later in
the paper. Recall that the mathematical models in the synthetic air data
estimation problem [the INS/GPS equations in [36], Eqs. (2) and (3)]
are nonlinear. The formulation of the EKF requires linearizing the
mathematical models, and thus the resulting estimator falls in the
domain of linear time-varying systems. Therefore, the observability
analysis requires the combined use of nonlinear and linear tools. In this
paper, we take a two-tiered approach to this analysis. The first tier
involves assessing the observability of the state vector δx ∈ R18×1

given by Eq. (1). This analysis was carried out in some detail in [7],
and the details of that analysiswill not be repeated here. The key results
of this analysis were that δx is conditionally observable and its
observability requires the following.
1) The airplane is accelerating so that the INS/GPS heading and

gyro bias states become observable [36].
2) The wind speed vectorWn is quasi-static. The term quasi-static

is used to mean that the variations in Wn are such that it is valid to
assume that it remains constant over a small time window.
With respect to the second observability condition, the size of the

time window in which Wn can be assumed constant depends on
several factors. In the second-tier analysis (see Sec. IV), we provide
mathematical relationships describing these and other conditions that
enhance the observability of the SADS estimates.

IV. Observability Enhancement

Although the work in [7] provided a mathematically based
observability analysis, the second-tiered analysis here will provide a
more intuitive interpretation. The goal is to get insight into how
observability can be improved or enhanced. This approach sheds some
light on how to design flight maneuver sequences to optimize the
degree of observability. To this end, the estimation problem is recast in
a slightly different way. The objective is to estimate α, β,WN ,WE, and
WD. Observability is an inherent property of the system that does not
change by new definitions of the state vector. The recasting does not
alter the observability, but it gives a better view into the problem by
essentially eliminating the dynamicmodel and allowingus to recast the
problem as a batch estimation process.

A. Change of Variables

Let vbg � � ug vg wg �T denote the velocity vector of the
aircraft ground velocity in the body frame. Let vba � � u v w �T
be the air velocity in the body frame. The kinematic relationship
between ground velocity, air velocity, and wind velocity is
described by the following:

2
664
ug

vg

wg

3
775 �

2
64
u

v

w

3
75� Cb

n

2
664
WN

WE

WD

3
775 (10)

The vector vba can also be expressed in terms of airspeed Va,
angle of attack α, and side-slip angle β, as shown in Eq. (11):

2
64
u

v

w

3
75 �

2
664
Va cos α cos β

Va sin β

Va sin α cos β

3
775 (11)

Note that Va ≠ u because the stagnation pressure sensed by a
pitot tube is relatively constant under small (≤� 10 deg) variations
of α and β [39].

Using a small-angle approximation for α and β and substituting
Eq. (11) into Eq. (10) gives the following:

where Ψ � Cb
n, and Ω is a function of Va, shown next:

Ω � Ω�Va� � Va

2
664
0 0

0 1

1 0

3
775 (13)

Wewill refer to Eq. (12) as thewind triangle kinematic relationship
and use it as the measurement update equation of the following LTV
system:

LTVK �
(
xk�1 � Φkxk �Gkuk �wk

yk�1 � Hkxk � ηk
(14)
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where Hk � �Ψk j Ωk �; yk � � ug�k� − Va�k� vg�k� wg�k� �T ;
the lowercase k represents the time step (sensor sampling rate); and the
uppercaseK represents theKth piecewiseLTVsystem (seeSec. IV.E.1).
The states of the LTV are xk � �WN WE WD αk βk �T . We
assume that the wind is constant for each LTV, but α and β are not.
Because we are performing a nonstochastic observability analysis, the
process noisewk and measurement noise ηk are dropped. Also, there is
no input to the system (i.e., Gk � 0). Our objective is to convert this
LTV into a batch process. To this, we can assume that Φk is equal to a
5 × 5 identity matrix. Because we have already assumed that the winds
are constant in a given LTV, the fact thatΦk � I5×5 implies that all the
information about the changes in α and β are coming from the
measurement update equation of the LTV, namely Eq. (12).
To convert any LTV to a batch process, we assume that wind is

constantover a timewindowofwidth l ⋅ Ts. Theconstant l is thenumber
of time steps (l ∈ �1; 2; : : : ; k; : : : ; n − 1; n�), and Ts � tk − tk−1 is
the sampling interval. Now, the entire trajectory is a collection of
piecewise LTV systems LTV1;LTV2; : : :LTVK; : : :LTVN , where
K ∈ �1; N�, and thewind vector is assumed to be constant over the time
span l ⋅ Ts. If we now start stacking the measurement equation for
several epochs, we obtain

The vector Y has 3n elements. The vector X has 3� 2n elements.
For the preceding system to be solvable, H must have full rank, and
3n ≥ 3� 2n ⇒ n ≥ 3. Thus, as long as thewind remains constant over
a timewindow of 3Ts (or, alternatively, each LTVis at least 3Ts wide in
time) andH is full rank, then the SADS problem is observable. As long
as attitude changes, meaning thatΨk are not constant, thenHwill have
full rank. However, a simple “yes” or “no” on observability does not tell
us anything about the quality (accuracy) of the estimates.What wewant
to know is how much do attitude and airspeed have to change to get an
accurate estimate? To answer this question, we will look at the
observability Gramian.

B. Maneuver Optimization Problem

To proceed with this analysis, we assume that sufficient time has
elapsed, and the INS/GPS solution has converged such that the
attitude errors are small. This means that Cb

n is known. The Gramian
Gd over l ⋅ Ts is calculated to be using the discrete observability
Gramian definition [Eq. (6) in [7]]:

Gd � HTH (16)

As mentioned earlier, at least three different time steps are needed to
achieve a rank of 5. However, if attitude and airspeed are not changed
sufficiently over 3Ts, then the matrix H of Eq. (15) may be ill-
conditioned. If α and β are changing rapidly and significantly, then an
even larger change in attitude and airspeed are required. We will start
with a benign but unrealistic case of α and β being constant. This will
provide a floor or the minimum attitude change required. Wewill relax
this assumption later. Now, with the constant α and β assumption,
Eq. (15) has dimensionsof3k × 5, andmatrixH has the following form:

Hc �

2
66666666664

Ψ1 Ω1

..

. ..
.

Ψk Ωk

..

. ..
.

Ψn Ωn

3
77777777775

(17)

Hence, for a fixed time horizonT, the followingGramian is obtained:

Gd � HTH for nonconstant α and β (18)

� �Hc�THc for constantα and β (19)

Krener and Ide [31] introduced measures of observability based on
the condition number or the smallest singular value of the local
observability Gramian. The condition number measures the degree of
attenuation information experiences while traveling along the path
from the measurements to the states. The larger the condition number,
the more attenuated the information. The local observability Gramian
can be calculated in the closed form in this case, and we will use this
metric to quantify observability. Formally, measuring the degree of
observability for the system can be formulated as the following
optimization problem for the condition number of the observability
Gramian κ�Gd�, given next:

argmin
ψnb1

; : : : ;ψnbk
; : : : ;Va1

; : : : ;Vak

κ�Gd�

s:t: Vamin ≤ Va ≤ Vamax

θmin ≤ θ ≤ θmax

ϕmin ≤ ϕ ≤ ϕmax

ψmin ≤ ψ ≤ ψmax

(20)

where ψnbk � �ψ θ ϕ �T and Vak are the set of Euler angles and
airspeed at time step k. There are four linear constraints that represent, in
part, the flight envelope of the aircraft. The goal is to minimize the
conditionnumberover a finite timehorizon.Theoretically, theminimum
condition number that can be obtained is 1, which is an indication that
thegivenmatrix iswell conditioned and the states arewell observed.The
Gramian Gd for the constant α and β can become ill-conditioned due to
the nature of the Hc matrix. The first three columns consist of the
coordinate transformationmatrix (with the norm equal to 1), but the last
two columns are scaled by the airspeed (typically in the range of
15–25 m∕s for small UAVs). This makes the entire matrix ill-
conditioned. Therefore, the minimum acceptable condition number is a
function of a particular aircraft’s flight envelope. The minimum
acceptable κmin can be derived from the design requirements from users
of the SADS. The definition of condition number of a matrix Gd,
denoted κ�Gd�, is defined as

κ�Gd� � kGdk ⋅ kGd
−1k (21)

where kk is either the 2-norm or Frobenius norm of the Gramian [40].
Because the optimization problem in Eq. (20) is nonconvex (multipli-
cation of sinusoidal functions), numerically solving it would not give us
any meaningful insight (multiple local minimum solutions). Therefore,
it is parsed into several suboptimization problems that are physically
sound for practical aircraft maneuvers.

C. Two-Dimensional Versus Three-Dimensional Maneuver

As a concrete demonstration of how the insight gained from the
observability analysis in the previous section can be used in affecting
the performance of the SADS estimates, we exercise the estimator on
a catalog of aircraft trajectories. A catalog of typical two-dimensional
(2-D) and 3-D flight maneuvers is provided in Table 1. The double
dashed lines in Table 1 mean that the variable is not being actively
commanded; it only varies passively due to the coupled longitudinal
and lateral motions. For example, if the heading angle is changing,
then the roll anglewill inevitably change. However, the roll angle can
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return to zero while the heading remains at a new commanded value
after the maneuver. We will consider the first 3-D case in Table 1 in
detail to demonstrate the conditional observability analysis. All other
cases can be analyzed in the same fashion. Some key results for this
analysis are summarized at the end of this section.

D. Three-Dimensional Case Study Example

At least three different points in state space (i.e., k � 1; 2; 3) are
needed for the Gramian Gd to achieve full rank. For the first case of
3-D motion, the Hc�1:3� matrix is used in the construction of Gd

using Eq. (19). Because an aircraft can start from any orientation,
the easiest orientation is picked as the reference point, which is to set
all Euler angles to be 0 deg. The airspeed is set to be 15 m∕s. For the
second and third points in state space, ϕ is held to be the same angle,
but ψ and θ are varied, giving the following Hc�1:3�:

Hc�1:3� �

2
6664

Cb
n�0; 0; 0 deg� Ω�Va�

Cb
n

�
0 deg; θi

2
; ψ i

2

�
Ω�Va � ϵ�

Cb
n�0 deg; θi;ψ i� Ω�Va � ϵ�

3
7775 (22)

where θi ∈ �−30; 30 deg�, and ψ i ∈ �0; 180 deg�. θ and ψ in the
second row block of Eq. (22) are half of the values in the third row
block. This is done to prevent a poor condition number. Also, small ϵ
is necessary to prevent a poor condition number, and it is set to be
1 m∕s. WithHc�1:3� covering all possible pitch and heading angles,
Figs. 2 and 3a are obtained by calculating the 2-norm and F-norm
condition number over a sweep of ψ and θ, respectively.
Figure 2 is the normalized 2-norm condition number for various ψ

and θ. The normalized condition number is calculated by dividing every
condition number by the minimum condition number. Figure 2 gives a
guideline on how an airplane should maneuver to achieve a high degree
of observability. For example, in Fig. 2, the red dot O represents the
reference orientation �ψ ; θ;ϕ� � �0; 0; 0 deg�, which is the initial of
orientation of the aircraft. Now, suppose that the red dotA represents the
final orientation [e.g., �90;−20; 0 deg�] of the aircraft in one flight
maneuver sequence.A certain normalized condition number is achieved
by this maneuver sequence from the initial orientation represented atO
to the final orientationpresented atA. The lower the conditionnumber is,
thehigher degreeofobservability is achievedby themaneuver sequence.
Figure 3a is the normalized F-norm condition number for various ψ

and θ. As can be seen in the figure, the dynamic range of the F-norm as a
function ofψ and θ is larger than that for the 2-norm. For example, once
the orientation deviates from point O, the condition number is immedi-
ately reduced to a flat region. The condition number is not further
reduced if heading ψ and pitch angle θ are not changed together signifi-
cantly. As such, the F-norm is a more sensitive indicator in the relation-
ship between observability and aircraft maneuver aggressiveness.
Of course, this is a very optimistic analysis because α and β were

assumed to be constant. When α and β are allowed to vary and H
[Eq. (15)] is used to form the observability Gramian, Fig. 3b results.
Figure 3b is effectively Fig. 3awith a “crown” of the surface removed.
In other words, if α and β are changing, more aggressive attitude
changes are needed to achieve a good degree of observability.
A similar analysis was carried out for the different cases listed in

Table 1, and a summary of the key findings of this analysis follows.
1) Condition number does not improve significantly if heading

angle stays at the reference value, regardless of how the pitch angle is
changed. The same can be said if the pitch angle stays at the reference
value while the heading angle is changed.
2) The minimum condition number is achieved by changing the

aircraft’s pitch and heading angle simultaneously (greatest gradient
direction) as much as possible.
3) If the reference point is at (0, 0, 0 deg), then the figure is

symmetric with respect to ψ − κi or θ − κi (where i � 2 or F)
planes. In other words, pitching down or up and changing heading

Table 1 2-D and 3-D flight maneuver motion

Maneuver Va ψ θ ϕ

2-D case

1 Constant Constant Varying ——

2 Constant Varying Constant ——

3 Constant Constant — — Varying
4 Varying Constant Varying ——

5 Varying Varying Constant ——

6 Varying Constant — — Varying

3-D case

1 Constant Varying Varying ——

2 Varying Varying Varying ——

3 Varying Varying Varying Varying

Fig. 2 Normalized 2-norm condition number over ψ and θ.

Normalized F-norm condition number over 
assuming

and 
and are constant over each LTVK

a) Normalized F-norm condition number over 
assuming

and 
and changing over each LTVK

b)
α α ββ

Fig. 3 Normalized F-norm condition number over ψ and θ.
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clockwise and counterclockwise have the same effect on condition
number.
4) Varying airspeedwhile changing the orientation of the aircraft is

the best flight maneuver to improve the condition number.
The observability analysis presented here is independent of the

aircraft. The analysis can be applied to any aircraft to study observ-
ability. Furthermore, the analysis is not derived based on the typical
flight trajectories such as a circular or a climb/descent trajectory.
Instead, the flight trajectory is decomposed into points of the state space
thatwewill refer to as themaneuver frame in this paper. Eachmaneuver
frame isdefinedby the aircraft’s orientationand airspeed.A sequenceof
maneuver frames forms a flight trajectory. The condition number of an
LTVobservabilityGramian is used as ameasure of observability, and its
variation as a function of flight trajectory is examined to show how an
aircraft can maneuver to achieve a high degree of observability.

E. Time Aspect of Maneuverability

The time it takes to maneuver from point O to point A shown in
Figs. 2 and 3a is aircraft-dependent. For example, it might take a
slightly longer time for a larger aircraft to maneuver from pointO to
point A than it would for a smaller, more agile aircraft. As we will
discuss next, the length of the time interval required to go from one
maneuver frame to the next and how the wind varies during this time
interval have an important bearing on theSADSestimator observability.

1. Maneuver Frame Versus Estimator Rate

Recall that the maneuver frame is defined as one snapshot of
the aircraft maneuver in the inertial coordinates, characterized by
aircraft’s orientation and airspeed. The rate atwhich an aircraftmoves
from one maneuver frame to the next depends primarily on the
aircraft’s dynamics. The estimator rate, defined as the rate at which
the SADS estimator computes the air data states, is related to the
sensor sampling rate. It is the rate at which the underlying nonlinear
equations are linearized to form the LTV system used by the EKF. In
Fig. 4, the flow of maneuver frames and its relationship to estimator
rate are shown graphically. If the wind velocity vector is constant,
then all that is required for observability is that the aircraft go from
maneuver frame O to maneuver frame A. The number of sampling
frames that elapse during the movement from O to A would be
immaterial. However, the fact that the wind velocity vector is not a
constant puts an upper bound on how slowly the aircraft can move
from maneuver frame O to A and still maintain observability of the
SADS estimator.

2. Wind Variation During Maneuvers

Figure 5 is a sectional cut at ψ � 90 deg of Fig. 2. Let τM the be
maneuvering time from point O to any other maneuver frame (i.e.,
A, B, C, or D). Let τW be the time constant of the wind, the average
time ofwind variation. Let τUM be the upper bound of themaneuvering
time and τLW be the lower bound of the time constant of the wind. The
following inequality has to be satisfied to have an observable system:

τM ≤ τUM ≤ τLW ≤ τW (23)

Equation (23) states thatmaneuver time has to be less than thewind
time constant. This supports the assumption of slow-varying wind. If
an aircraft can maneuver fast enough and provide enough excitation

before the wind changes, then the estimator is observable; the wind,
angle of attack, and angle of sideslip can be estimated.
This concept is depicted graphically in Fig. 5, which shows four

hypothetical trajectories in the maneuver space: OA, OB, OC, and
OD. It also shows a timeline of maneuver times. For the estimator to
be observable, the maneuver has to satisfy two criteria; it must have
achieved an acceptable condition number, and the maneuver time
τM has to be less than the lower bound of wind time constant τLW .
Assuming that the area below the dotted line, denoted as the sufficient
maneuver region, is the region of acceptable condition numbers, then
OA and OC have an acceptable condition number, whereas OB and
OD do not. For the maneuver time τM, it can be seen that τM;OA and
τM;OB are less than τLW , whereas τM;OC and τM;OD are not. Thus, as
summarized in Table 2, the trajectory from O to A is observable.
The wind time constant depends on the weather condition on a

given day. There are models for the variation of τW . For example, the
work in [37] provides a model with an upper bound for τW, which is
approximately 400 s.

V. Validation and Simulation Study

A. Simulation Setup

A modified version of the nonlinear aircraft Simulink model
described in [41,42] is used for the simulation analysis that is
discussed next. The parameters of the aircraft in the Simulink model
are for an Ultra Stick 120 UAV, whose equations of motion were
developed in [43].Differentmaneuver sequences are simulated to test
the observability analysis. For the sake of brevity, only case 2 of the
3-D cases listed in Table 1 is discussed here. Note that case 2 is amore
generalized version of case 1 shown in Sec. IV.D. The airspeed in
case 2 is varied to help increase the degree of observability through
more vertical excitations. Case 2 consists of twomaneuver sequences

Fig. 4 Graphical depiction of the maneuver frame and sampling frame.

Fig. 5 Sectional cut of Fig. 2 when ψfinal � 90 deg.
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(denoted maneuvers 1 and 2 in Table 1) executed sequentially. The
wind direction is simulated to slowly vary horizontally from 30°W to
45°E in the first 75 s. The wind direction then is kept at 45°E. The
downward wind is initially at 0.5 m∕s and is then stepped to
−0.5 m∕s at 150 s. The actuator noise is set to be zero for simplicity.
The details of the maneuver and wind conditions can be found in
Table 3. The measurement noise and the wind parameters of the
simulation are listed in Table 4. The GPS and IMU parameters are
chosen based on a consumer-level GPS and IMU [36]. The measure-
ment error for airspeed is set to be 10% of the airspeed. This is
determined to be sufficient to cover observed errors in the pitot tube
based on the real flight calibration results.
To estimate the changes in thewind accurately during flight, a high

degree of observability needs to be achieved. Varying heading
constantly and sinusoidally varying airspeed (which leads to varying
pitch angle) simultaneously is sufficient to accurately estimate the
changes in the horizontal wind direction (maneuver 1 in Table 3). The
rate of heading change and airspeed have to be faster than the rate of
the horizontal wind directional change.

Maneuver 2 contains several pitch and altitude changes. These are
required to make the vertical component of windWD observable. In
addition to constant heading change, maneuver 2 also features large
airspeed changes. This is done by commanding the aircraft to climb
and descend at themaximum rate supported by the air frame andpower
plant (changes aroundΔ8 m∕s). Figure 6a shows the trajectory of the
simulated flight. The color bar represents themagnitude of the altitude.
Figure 6b shows the simulated time history of airspeed, altitude,
and throttle. Observe the large altitude variation (45–120 m) and
concomitant large vertical velocity excitation of maneuver 2.
Figure 7 sheds light on why maneuver 2 is necessary for all the

wind components to be observable. To estimate the 3-D wind vector,
the aircraft must fly with a sufficient amount of different inertial
velocities, particularly with large directional variations. This is
shown on the left side of Fig. 7, where the inertial velocity vectors
(green color vectors) are used to estimate the 3-D wind vector (the
blue color vector). The aircraft can achieve sufficient variation in
inertial velocity, particularly in the vertical direction, by flying
through p1, p2, and p3.
The right side of Fig. 7 illustrates how the flight trajectory points

p1, p2, and p3 can be thought of geometrically as a problem of
estimating the radius and center of the sphere. If we translate thewind
vector and all the inertial velocity vectors to the origin of the NED
frame, the difference between the wind vector and inertial velocity
vector is the airspeed vector (red vector). The inertial velocity vectors
point to the surface of the sphere. When there are sufficient inertial
velocity vectors, the center and radius of the sphere can be estimated.
The radius of the sphere represents the airspeed magnitude. The
center of the sphere is used in thewind triangle equation to obtain the
3-D wind vector. The yellow ellipsoid only represents partial wind
observability space if the downward direction is not fully swept by
the inertial velocity vector. In other words, the yellow ellipsoid
is deficient for the 3-D wind estimation. Furthermore, inaccurate
spherical estimation can also result in ambiguity in estimating the
direction of the downward wind. This indicates that maneuvers
containing large variations in pitch, altitude, and heading are needed
to estimate the 3-D wind vector.
Maneuver 1 is not sufficient enough to capture the change in the

downward wind. The vertical inertial velocity component VD has to
be the same order of magnitude as the horizontal inertial velocity
components VN and VE to detect the downward wind change.
Therefore, maneuver 2 is employed to provide both horizontal
and vertical velocity excitations in the second phase of the flight
simulation.

B. Simulation Results

Figure 8 shows the attitude estimates, attitude estimation error, and
its 3 − σ covariance bound for the entire flight. The uncertainty
representedby3 − σ boundof the attitudedecreases significantly at 75 s
due to the longitudinal maneuver. The 3 − σ bounds stop decreasing
further and become oscillatory, especially in ψ . In real flight, the
uncertainty bound for attitude should decrease further; the maneuvers

Table 2 Observability cases study based on
normalized condition number κacceptable and maneuver

time τM

Case κ�⋅� < κacceptable τM;�⋅� < τLW Observable maneuver?

OA Yes Yes Yes
OB No Yes No
OC Yes No No
OD No No No

Table 3 3-D case 2 simulation description

Name Time, s Description

Maneuver 1 0–75 Steady flight with varying heading ψ
constantly (in a figure-of-eight pattern);
sinusoidally varying airspeed Va

(�4.5 m∕s from average)
Maneuver 2 75–300 Aggressive flight with varying heading ψ

constantly (in a figure-of-eight pattern);
sinusoidally varying airspeed Va (�8 m∕s
from average)

Wind
condition 1

0–75 Start blowing from 30° W, then direction is
slowly changing to 45° E in 75 s; downward
wind: 0.5 m∕s

Wind
condition 2

75–150 Stays at 45° E; downward wind: 0.5m∕s
(WN �−3.5535m∕s,WE �−3.5535 m∕s,
WN � 0.5 m∕s)

Wind
condition 3

150–300 Stays at 45°WE; downward wind:−0.5 m∕s
(WN �−3.5535 m∕s,WE �−3.5535 m∕s,
WN � −0.5 m∕s)

Miscellaneous 0–300 Actuator noise off

Table 4 Measurement and wind parameters setting for simulation

Parameter Source Variable Simulation setting

Position GPS position measurement PN , PE, PD σPD
� σPE

� σPD
� 3 m

NED velocity GPS velocity measurement VN , VE, VD σVN
� σVE

� σVD
� 0.2 m∕s

Airspeed Pitot tube Va σVa
� 10%Va

Acceleration IMU measurement ax, ay, az σaw � 0.05 m∕s2
σad� 5−3 g
τa � 300 s

Angular rate IMU measurement p, q, r σgw � 0.1 deg ∕s
σgd � 360 deg ∕h
τg � 300 s

Wind Wind parameter WN ,WE,WD σWN
� σWE

� 0.5 m∕s
σWD

� 2.0 m∕s
τWN

� τWE
� 1 s

τWD
� 10 s
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will be more aggressive (e.g., include sharp turn) than the ones
simulated.
Figure 9 shows the 3-D wind components, α, and β estimates. All

the wind components converge to the true value after a sufficient
amount of time and excitation. For theWN andWE components, the
estimates slowly converge to the true value, whereas themagnitude of
wind is changing over the first 75 s. The downwardwind estimateWD

captures the vertical wind speed change at t � 150 s. The α estimate
converged after about 20 s. When the downward wind changed

direction at 150 s, the α estimate quickly converged to the true value.
On the other hand, β estimate did not converge quickly to the true
value. Stable convergence was achieved at t � 210 s. The accuracy
of the attitude is critical to β estimation. For example, this can be
observed by looking at the shape of the 3 − σ bound for the β
estimates shown in Fig. 9b; it mirrors the shape of the 3 − σ bound
of ψ .
The 1 − σ of α and β estimate are determined to be 5.04 and

3.70 deg, respectively. The uncertainty of α and β is large and would
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Fig. 7 Wind velocity estimation illustrated using sphere estimation.
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generally be unacceptable. Note that the model-aided SADS
estimator described in [1,3] reported a 3 − σ covariance bound for the
airspeed, angle of attack, and sideslip of 2 m∕s, 3 deg, and 5 deg,
respectively. The fact that the estimator proposed here is less accurate
should not come as a surprise. After all, it is a model-free estimator
and cannot leverage of information available from an aerodynamic
model of the airplane. The following section explores the limitations
of the estimates through sensitivity and error analysis. This analysis
will give insight into how to improve the quality of the SADS
estimates.

VI. Accuracy Limitation

The simulation of the previous section showed that the uncertainty
of α and β can be rather large. In this section, we show how various
factors affect the accuracy of α and β andwhy theminimum expected
accuracy of α and β is mainly a function of the wind uncertainty and
airspeed. The variance on the estimation errors of α and β [the
diagonal entries of Pαβ in Eq. (8)] are given by

Pαβ�1; 1� � σ2α �
�

∂α
∂VN

σVN

�
2

�
�

∂α
∂VE

σVE

�
2

�
�

∂α
∂VD

σVD

�
2

�
�
∂α
∂ϕ

σϕ

�
2

�
�
∂α
∂θ

σθ

�
2

�
�
∂α
∂ψ

σψ

�
2

|��������������������������������������������������������������������������������{z��������������������������������������������������������������������������������}
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�
�
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�
2

�
�
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2

|�������������������������{z�������������������������}
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�
�

∂α
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σWD

�
2

|��������{z��������}
VerticalWind

(24)

Pαβ�2; 2� � σ2β �
�
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�
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(25)

The off-diagonal terms of Pαβ representing correlations in the
errors between the estimates of α and β are not discussed here.
The key error sources are INS/GPS filter estimation errors and the
uncertainty in the 3-D wind states. The σ�⋅� in the first six terms of
Eqs. (24) and (25) primarily represent the IMU errors and GPS
measurement noise, and σW�⋅� terms represent the wind modeling
uncertainty.
Because all the derivatives and σ�⋅� terms in both Eqs. (24) and (25)

are time-varying, the time histories of the terms are examined.
Figure 10 shows the error contributions of the three grouped terms in

Eqs. (24) and (25) for σα and σβ. The uncertainty of the downward
wind estimate is seen to be the biggest uncertainty factor in σα and
the smallest in σβ. This points to one of the possible solutions for
improving the accuracy of α and β: use higher-quality IMU and
GPS sensors. In the following section, various IMU and GPS
sensors are simulated to assess the impact on the accuracy of α
and β.

A. Inertial Measurement Unit and Global Positioning
System Contribution

The quality of the IMU and GPS measurement depend on the
quality of the sensors. The output of each inertial sensor (gyro or
accelerometer) of the IMU is modeled as an additive noise and bias.
The additive noise is assumed to be wide-band noise with a given
variance. The bias is assumed to be a first-order Gauss–Markov
process, which is characterized by a variance and a time constant.
For simplicity, we assume that all three accelerometers and all three
gyros in the IMU are identical. Thus, a total of six parameters are

required to model the IMU errors. For the GPS, an additive noise
model is assumed in both position and velocity measurements.
Thus, the impact on the accuracy of α and β can be examined by
varying the error model parameters in a Monte Carlo analysis. Both
IMU and GPS parameters and their possible ranges are listed in
Table 5.

Figure 11 summarizes the key results from the Monte Carlo
simulation conducted to assess how each parameter affects the
accuracy of α and β. A starting point for these simulations is
what we call the baseline filter. This is a filter whose sensor error

-6

-4

-2

W
N

 (m
/s

)

-4

-2

0
0 50 100 150 200 250 300

50 100 150 200 250

0 50 100 150 200 250 300

0 50 100 150 200 250 300

300

time (sec)
0 50 100 150 200 250 300

time (sec)

-5

0

5

True
Estimate

a) Simulated vs. estimated wind vector

-20

-10

0

10

20

 (
de

g)

-20

-10

0

10

20

 (
de

g)

True (deg)
Estimate (deg)
3-  bound

b) Simulated vs. estimated    and  

W
E

 (m
/s

)
W

D
 (m

/s
)

Fig. 9 Wind vector (true and estimates), α, β (true and estimates), and its 3 − σ bounds.
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characteristics are given in Table 4. For each Monte Carlo run, a
particular error parameter in the baseline filter is perturbed to
assess the impact on the accuracy of the estimates of α and β. The
process and measurement noise matrices are changed according to
the assigned parameter in each run. For each set of parameters,
20 Monte Carlo simulations are conducted. The averages of the
final steady-state values of σα and σβ for all 20 runs are plotted
against various parameters.
Figure 11a and 11b show how the gyro and accelerometer

parameters affect the accuracy of α and β. In Fig. 11a, σα is
insensitive to both σgw and σaw, whereas σβ is more sensitive to
σaw than σgw. In Fig. 11b, both σα and σβ are insensitive to σgd and
σad. What these results show is that care has to be taken when
choosing the correct parameters. For example, a better IMU does
not necessarily improve accuracy much in terms of the σ of α
and β.
Figures 11c and 11d show how GPS position and velocity noise

affect the accuracy of α and β. In Fig. 11c, σα stays around 5 deg and
occasionally exceeds 5 deg. The phenomenon is more apparent in σβ.
σβ often jumps to abnormal values when σPD

is greater than
1 m. Overall, both α and β are much more sensitive to σPD

than σPNE
.

Figure 11d shows that α and β are more sensitive to σVD
than

σVNE
in terms of the σ value. Only a small range of σV�⋅� is shown

because anything greater than those values causes the σ values to
become much worse or even diverge. Comparing the range of
the GPS position and velocity used in this analysis, it
is found that α and β are more sensitive to GPS velocity
measurement error than GPS position measurement error. The
effect of GPS is greater than the effect of IMU on the accuracy
of α and β, and having a better GPS can reduce uncertainty
significantly. Therefore, to obtain measurements sufficient to
achieve the accuracy shown in this paper using the proposed
estimator, a high-price-range consumer-grade GPS and a middle-
price-range IMU are needed.

B. Wind Limitation

The previous section has narrowed down how IMU andGPS affect
the accuracy of α and β. In this section, the effect of wind parameters
on the accuracy of α and β is examined. It is stated earlier that the
largest error source that affects the variance of α is the wind
parameters, and it is also the secondary error source contributing to
the variance of β. Furthermore, the uncertainty σWD

is the biggest
error source entering the estimator.
The wind is modeled by the first-order Gauss–Markov model,

and the parameters are determined empirically. Ideally, the three
components of the wind can be all equal to zero on a very calm day.
However, there is usually a steady dominating horizontal wind.
When this happens, the downward wind WD (prevalent wind) is
usually relatively small compared to the WN and WE components,
and it is mainly dominated by wind gust and turbulence. To capture
the downward wind in the presence of a dominating horizontal
wind, the variance of the Markov process for the downward wind
has to be larger than the variance of the Markov process for the
horizontal wind. This relationship is shown in Eq. (26), where the
variance of the downwind has to be greater than both of the variance
of the north and east wind components, and it is empirically
determined that the ratio of the variance between 1.5 and 10 works
well:

2σ2WN

τWN

� 2σ2WE

τWE

<
2σ2WD

τWD

(26a)

2σ2WD
∕τWD

2σ2WN
∕τWN

∈ �1.5; 10� (26b)

The time constant τW reflects how fast the wind is changing over
time. The maneuvering time τM has to be less than or equal to τW
[Eq. (23)]. The UAVused in this paper has a time constant 0.14 s of
the short-period mode, and the short-period mode reflects how fast
the aircraft can quickly self-damp when the stick is briefly
displaced. To satisfy Eq. (23), τWN

and τWE
are chosen to be 1 s.

Similarly, the time constant of the phugoid mode is 9.53 s, and the
phugoid is caused by a repeated exchange of airspeed and altitude.
This relates to the vertical excitation in the downward wind
direction; thus, τWD

is chosen to be 10 s. Although the analysis to
determine parameters here is heuristic, more rigorous work can and
should be done in the future.
With predetermined time constant τW , it is found that setting

σWN
� σWE

� 0.5 m∕s and σWD
� 2 m∕s works well with both

simulation and flight datawhen there is a dominating horizontal wind
(3–6 m∕s). If the flight is conducted in a very calm day, then the

Table 5 INS/GPS sensor error model parameters for tradeoff study

Sensor Variable Range (tactical to consumer grade [36])

GPS σPD
, σPE

, σPD
0.01–10 m

σVN
, σVE

, σVD
0.01–1 m∕s

Accelerometer σaw 0.05–0.1 m∕s2
σad 5 × 10−6 − 5 × 10−3 g
τa 50–300 s

Rate gyro σgw 0.01–5 deg ∕s
σgd 0.005–1080 deg ∕h
τg 50–300 s
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Fig. 10 Various error contribution in σα and σβ.
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performance of the estimator will be degraded because the wind
condition does not match the presumed wind modeling parameter
setting.
The estimator can be improved if the uncertainty in the wind is

small. If there is an external sensor (e.g., accurate weather broadcast
data) that canmeasure the 3-Dwindwith good accuracy, the accuracy
of α and β can be improved. Improved wind models usually account
for gust and turbulence, but it does not reduce the uncertainty in the
wind. Therefore, for any synthetic air data estimation, the uncertainty
in wind limits the accuracy of α and β.

C. Airspeed Limitation

For small UAVs, the airspeed is usually low and in the range of
12–30 m∕s. The impact of airspeed on the SADS estimates can be
determined by using the following error equations:

δα � −
w

u2 �w2
δu� u

u2 � w2
δw (27)

δβ � −
uv

V2
a

������������������
u2 � w2

p δu� u2 � v2

V2
a

������������������
u2 � w2

p δv −
vw

V2
a

������������������
u2 � w2

p δw

(28)

Ifu ≫ v andu ≫ w, Eqs. (27) and (28) can be further simplified as
the following:

δα≈
1

u
δw� δθ� 1

u
�cosθδVN − cosθδWN − sinθδVD � sinθδWD�

(29)

δβ ≈
1

u
δv � −δψ � 1

u
�− sinψδVN � sinψδWN � cosψδVE

− cosψδWE� (30)

FromEqs. (29) and (30), if the airspeed is large (represented by the
u term), then the accuracy of α and β largely depends the accuracy of
the attitude estimate. The uncertainty of inertial velocity and wind
velocity are suppressed by the large airspeed. In other words, when
the aircraft is operating at a high speed, the magnitude of the wind is
much smaller than the airspeed, and so the wind uncertainty is
relatively small.
By squaring each term in Eqs. (29) and (30), and assigning some

typical values for δV�⋅� and δW�⋅� (the σW and σV values in Tables 4
and 5), and some reference point at θ � 5 deg and ψ � 0 deg, the
following trend shown in Fig. 12 is obtained for σα and σβ. From
Fig. 12, σα and σβ arewell below1 degwhenu is greater than 40 m∕s,
given an accurate σθ and σψ (e.g., 0.5 deg) as an example.
Increasing airspeed would improve the accuracy of α and β if

the attitude accuracy is reasonable. However, because small UAVs
cannot usually operate over 25 m∕s, σα and σβ can only be reduced to
some extent even if the attitude is relatively accurate.

a) Sensitivity analysis with respect to aw gw

PNE VNE
PD VD

ad gdand b) Sensitivity analysis with respect to and

c) Sensitivity analysis with respect to and d) Sensitivity analysis with respect to and

Fig. 11 Sensitivity of α and β with various parameters in IMU and GPS.
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Fig. 12 Effects of airspeed and attitude on the accuracy of σα and σβ.
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VII. Flight Test

Experimental validation of the model-free synthetic air data
estimator was accomplished by postprocessing the flight-test data
collected using the UltraStick 120 testbed shown in Fig. 13. The goal
of the flight test was to compare the performance of the estimator
against the traditional air data system installed on the aircraft. The
airframe is a low-cost fixed-wing radio-controlled aircraft with
standard elevator, aileron, and rudder control surfaces. The physical
and geometric properties can be found in [1]. The Ultra Stick 120
is equipped with a traditional pitot static system, a GPS receiver
(u-blox-Neo-M8N), and an IMU (Invensense MPU-9250). These

sensors are used to generate the α and β estimates. The ground truth
for α and β is supplied by a five-hole probe [44,45]. A five-hole probe
is a specially designed pitot tube that provides α, β, and Va

measurements. The five-hole probe is calibrated with wind-tunnel
data initially and then calibrated in-situ to account for local flow
conditions and alignment. In addition, an integrated INS/GPS
system onboard provides position, inertial velocity, and attitude
estimates.
The flight data used in this paper were collected on 21 June

2018. Although the main objective of the test was not solely for
the air data estimation, the flight maneuvers were designed to
provide sufficient excitation for the estimation. Wind circles,
push-over–pull-up (�2 g), and rudder-induced steady forward
slip maneuvers were conducted before other flight maneuver
tests. The sensor error model parameters of IMU and GPS used
for this flight test are given in Table 6. The wind parameters are
the same as the one used in the simulation. The IMU runs at
50 Hz for the time update, whereas the GPS runs at 1 Hz for the
measurement update.
Finally, tovalidate thewind estimation results, 3-Dwindcomponents

are collected during the flight test by a remote anemometer located
about 2.2 km away from the flight-test site. The anemometer is located
at a height of 127.9 m, and its measurements are taken at 20 Hz.
Although the measurements are not directly taken over the test field, it
provides a reasonable check for thewind estimation, particularly in the
wind direction.
Figures 14 and 15 show a portion of the flight-test results.

Figure 14 shows the 3-D wind estimates and the mean of the wind
measurements taken by the remote anemometer. The three standard
deviations of the wind components are also calculated and plotted in
Fig. 14. Themagnitude of these estimates are very similar to themean
values. They are also within the three standard deviations. From
Figs. 15a and 15b, it can be seen that theα estimate is reasonably good
compared to the five-hole calibrated αmeasurement, and the estimate
generally stays within the 3 − σ bound. On the other hand, the β
estimate momentarily goes out of the 3 − σ bound right after a sharp
turn at t ≈ 1275 s. This sharp turn is manifested by the significant
change in ϕ from a wing-level condition where β stays constant at
about −5 deg. This is due to INS/GPS attitude estimation errors. To
further analyze why the estimate is biased in this turn as well as to
understand the behavior of the 3 − σ bound of α and β, another

Fig. 13 Ultra Stick 120 setup.

Table 6 IMU and GPS sensor error model parameters for flight test

Sensor Setting

GPS σPN
� σPE

� 3 m, σPD
� 6 m

σVN
� σVE

� 0.5 m∕s, σVD
� 1 m∕s

Accelerometer σaw � 0.05 m∕s2
σad � 0.01 m∕s2

τa � 100 s
Rate gyro σgw � 0.00175 rad∕s

σgd � 0.00025 rad∕s
Tg � 50 s
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Fig. 14 Flight-test results: 3-D wind estimates.
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section of the flight-test results (around t � 1300 s and highlighted
by the gray shading) is examined closely in Fig. 16.
The trajectory, altitude,windmagnitude, and direction estimates of

the highlighted gray region are shown in Fig. 16b. TheUAV justmade

a sharp turn before flying to the east direction. Then, the UAV was
fighting against the wind before making another sharp turn back
to the west direction. Figures 16c and 16d show the estimates,
estimation errors, and 3 − σ bound for α and β in the highlighted
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Fig. 15 Flight-test results: α and β.
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region. The 1 − σ bounds for α and β shown in Fig. 16d are
determined to be 3.07 and 1.28 deg, respectively, which is a
significant improvement compared to the simulation results, due to
the more aggressive maneuver performed in the real flight test. The
α estimate is reasonably accurate before the sharp turn. Interestingly,
the β estimate seems to be accurate during the turn but starts going
out of the bound after the turn. Although this maneuver can provide
good excitation for the estimator, the maneuver itself is aggressive,
which can result in poor estimates in attitude, inertial velocities, and
wind estimates. This can be seen in the deviation in the θ estimate
from the INS/GPS solution as well as the changes in wind estimates.
Also, the uncertainties in all inertial velocity estimates increase
during the sharp turns (not shown here), which leads to errors in α
and β.
The poor estimates can also be explained by the various error

contributions shown in Fig. 17. When the attitude maneuvers are
benign (1280 ≤ t ≤ 1320 s), the biggest error contribution to α
comes from the uncertainty in the vertical wind estimate, and the
second largest contribution comes from the INS/GPS filter’s
attitude estimation errors. The smallest error in σα comes from the
uncertainty in the horizontal wind estimate. When the sharp turn
occurs (t ≈ 1320 s), the error from the vertical wind estimate
drops drastically because the sharp turn provides a sudden huge
excitation in the downward direction, whereas the uncertainty in
both INS/GPS and horizontal wind increase. The INS/GPS filter
normally does not provide good estimates when there is a sudden
dynamic change and sensor biases are not accurately estimated.
This explains the increase in the INS/GPS error. The increase of
the uncertainty in the horizontal wind estimate is also caused
by the sudden directional change of the aircraft. All the error
contributors of σα return to the nominal level when the aircraft
finishes the sharp turn.
The error contributions in σβ behavior is slightly different from the

simulation shown previously in Fig. 10. The error of INS/GPS ramps
up during a relatively straight flight and decreases during the sharp
turn. This is expected because the heading state ψ of INS/GPS
becomes less observable when there is no vehicle acceleration (e.g.,
turning flight). Once the turn is made, the degree of observability
increases again. The error contribution from the vertical wind
increases significantly when the sharp turn occurs. This signals that
the error from the vertical wind does play a huge factor in the β
accuracy. That is, the β estimate should not be relied onwhen the error
contribution from the vertical wind exceeds the INS/GPS error
contribution.

VIII. Conclusions

This paper presented a method for estimating 3-D wind vector,
angle of attack, and angle of sideslip without the aerodynamic model

of the aircraft. The observability analysis shows that the system is
conditionally observable, provided that wind speed and direction do
not change faster than the aircraft dynamics. A sensitivity analysis
was performed to show what factors affect the accuracy of the angle
of attack and sideslip estimates. Specifically, the variance of the
downward wind is the largest limiting factor to the angle of attack
and angle of sideslip estimations. A low airspeed would also
decrease the accuracy due to the relative increasing wind effect on
the aircraft. Furthermore, the accuracy of the attitude estimation also
plays a significant role in estimating angle of attack and angle of
sideslip. The conclusion of this is that an inexpensive, model-free air
data estimator can still provide reasonably accurate estimate of α
and β (1 − σ bound for a slow-flying unmanned aerial vehicle of
approximately 5 and 3 deg, respectively) in the absence of an air
data system and a dynamics model of the aircraft. The method and
results presented in this paper suggest that a synthetic air data
systems estimator can potentially be used as part of a fault detection
and isolation scheme for traditional air data systems.

Appendix: Derivation of Flow Angle Covariance

To calculate all the components of Aαβ, recall that α and β can be
calculated as

α � tan−1
w

u
; β � sin−1

v�����������������������������
u2 � v2 � w2

p (A1)

Using thewind triangle kinematic relationship andEq. (A1), all the
components can be calculated as follows:

∂α
∂�⋅� �

∂α
∂u

∂u
∂�⋅� �

∂α
∂w

∂w
∂�⋅�

∂β
∂�⋅� �

∂β
∂u

∂u
∂�⋅� �

∂β
∂v

∂v
∂�⋅� �

∂β
∂w

∂w
∂�⋅� (A2)

where the partial derivative with respect to the position, accelero-
meter, and gyro biases is zero. For completion, all the partial
derivatives involved are shown in Eqs. (A3) and (A4):

∂α
∂u

�−
w

u2 �w2

∂α
∂v

� 0
∂α
∂w

� u

u2�w2

∂β
∂u

�−
uv

V2
a

����������������
V2
a − v2

p ∂β
∂v

� 1− �v2∕V2
a�����������������

V2
a − v2

p ∂β
∂w

�−
vw

V2
a

����������������
V2

a − v2
p

(A3)
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Fig. 17 Error contribution to σα and σβ in the gray highlighted region of Figs. 15a and 15b.
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∂u
∂VN

� cos θ cosψ ;
∂u
∂VE

� cos θ sinψ ;
∂u
∂VD

� − sin θ;
∂u
∂ϕ

� 0

∂u
∂θ

� − sin θ cosψ�VN −WN� − sin θ sinψ�VE −WE� − cos θ�VD −WD�
∂u
∂ψ

� − cos θ sinψ�VN −WN� � cos θ cosψ�VE −WE�;
∂u
∂WN

� − cos θ cosψ ;
∂u
∂WE

� − cos θ sinψ

∂u
∂WD

� sin θ;
∂v
∂VN

� sinϕ sin θ cosψ − cosϕ sinψ ;
∂v
∂VE

� sinϕ sin θ sinψ − cosϕ cosψ ;
∂v
∂VD

� sinϕ cos θ

∂v
∂ϕ

� �cosϕ sin θ cosψ � sinϕ sinψ��VN −WN� � �cosϕ sin θ sinψ − sinϕ cosψ��VE −WE� � cosϕ cos θ�VD −WD�
∂v
∂θ

� �sinϕ cos θ cosψ��VN −WN� � sinϕ cos θ sinψ�VE −WE� − sinϕ sin θ�VD −WD�
∂v
∂ψ

� �− sinϕ sin θ sinψ − cosϕ cosψ��VN −WN� � �sinϕ sin θ cosψ − cosϕ sinψ��VE −WE�
∂v

∂WN

� −�sinϕ sin θ cosψ − cosϕ sinψ�; ∂v
∂WE

� −�sinϕ sin θ sinψ − cosϕ cosψ�; ∂v
∂WD

� − sinϕ cos θ

∂w
∂VN

� cosϕ sin θ cosψ � sinϕ sinψ ;
∂w
∂VE

� cosϕ sin θ sinψ − sinϕ cosψ ;
∂w
∂VD

� cosϕ cos θ

∂w
∂ϕ

� �− sinϕ sin θ cosψ � cosϕ sinψ��VN −WN� � �− sinϕ sin θ sinψ − cosϕ cosψ��VE −WE� − sinϕ cos θ�VD −WD�
∂w
∂θ

� �cosϕ cos θ cosψ��VN −WN� � cosϕ cos θ sinψ�VE −WE� − cosϕ sin θ�VD −WD�
∂w
∂ψ

� �− cosϕ sin θ sinψ � sinϕ cosψ��VN −WN� � �cosϕ sin θ cosψ � sinϕ sinψ��VE −WE�
∂w
∂WN

� −�cosϕ sin θ cosψ � sinϕ sinψ�; ∂w
∂WE

� −�cosϕ sin θ sinψ − sinϕ cosψ�; ∂w
∂WD

� − cosϕ cos θ (A4)
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